top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Harmonic modeling of voltage source converters using simple numerical methods / / Ryan Kuo-Lung Lia, Ramadhani Kurniawan Subroto. Bing Hao Lin
Harmonic modeling of voltage source converters using simple numerical methods / / Ryan Kuo-Lung Lia, Ramadhani Kurniawan Subroto. Bing Hao Lin
Autore Lian Ryan Kuo-Lung
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (419 pages)
Disciplina 621.3815322
Collana IEEE Press.
Soggetto topico Harmonics (Electric waves) - Mathematical models
Electromagnetic interference - Mathematical models
Electric power-plants - Equipment and supplies
Electric current converters - Mathematical models
Numerical analysis
Soggetto genere / forma Electronic books.
ISBN 1-119-52715-5
1-119-52719-8
1-119-52714-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Symbols -- Chapter 1 Fundamental Theory -- 1.1 Background -- 1.2 Definition of Harmonics -- 1.3 Fourier Series -- 1.3.1 Trigonometric Form -- 1.3.2 Phasor Form -- 1.3.3 Exponential Form -- 1.4 Waveform Symmetry -- 1.4.1 Even Symmetry -- 1.4.2 Odd Symmetry -- 1.4.3 Half‐Wave Symmetry -- 1.5 Phase Sequence of Harmonics -- 1.6 Frequency Domain and Harmonic Domain -- 1.7 Power Definitions -- 1.7.1 Average Power -- 1.7.2 Apparent and Reactive Power -- 1.8 Harmonic Indices -- 1.8.1 Total Harmonic Distortion (THD) -- 1.8.2 Total Demand Distortion (TDD) -- 1.8.3 True Power Factor -- 1.9 Detrimental Effects of Harmonics -- 1.9.1 Resonance -- 1.9.2 Misoperations of Meters and Relays -- 1.9.3 Harmonics Impact on Motors -- 1.9.4 Harmonics Impact on Transformers -- 1.10 Characteristic Harmonic and Non‐Characteristic Harmonic -- 1.11 Harmonic Current Injection Method -- 1.12 Steady‐State vs. Transient Response -- 1.13 Steady‐State Modeling -- 1.14 Large‐Signal Modeling vs. Small‐Signal Modeling -- 1.15 Discussion of IEEE Standard (STD) 519 -- 1.16 Supraharmonics -- Chapter 2 Power Electronics Basics -- 2.1 Some Basics -- 2.2 Semiconductors vs. Wide Bandgap Semiconductors -- 2.3 Types of Static Switches -- 2.3.1 Uncontrolled Static Switch -- 2.3.2 Semi‐Controllable Switches -- 2.3.3 Controlled Switch -- 2.4 Combination of Switches -- 2.5 Classification Based on Commutation Process -- 2.6 Voltage Source Converter vs. Current Source Converter -- Chapter 3 Basic Numerical Iterative Methods -- 3.1 Definition of Error -- 3.2 The Gauss-Seidel Method -- 3.3 Predictor‐Corrector -- 3.4 Newton's Method -- 3.4.1 Root Finding -- 3.4.2 Numerical Integration -- 3.4.3 Power Flow -- 3.4.4 Harmonic Power Flow -- 3.4.5 Shooting Method -- 3.4.6 Advantages of Newton's Method -- 3.4.7 Quasi‐Newton Method.
3.4.8 Limitation of Newton's Method -- 3.5 PSO -- Chapter 4 Matrix Exponential -- 4.1 Definition of Matrix Exponential -- 4.2 Evaluation of Matrix Exponential -- 4.2.1 Inverse Laplace Transform -- 4.2.2 Cayley-Hamilton Method -- 4.2.3 Padé Approximation -- 4.2.4 Scaling and Squaring -- 4.3 Krylov Subspace Method -- 4.4 Krylov Space Method with Restarting -- 4.5 Application of Augmented Matrix on DC‐DC Converters -- 4.6 Runge-Kutta Methods -- Chapter 5 Modeling of Voltage Source Converters -- 5.1 Single‐Phase Two‐Level VSCs -- 5.1.1 Switching Functions -- 5.1.2 Switched Circuits -- 5.2 Three‐Phase Two‐Level VSCs -- 5.3 Three‐Phase Multilevel Voltage Source Converter -- 5.3.1 Multilevel PWM -- 5.3.2 Diode Clamped Multilevel VSCs -- 5.3.3 Flying Capacitor Multilevel VSCs -- 5.3.4 Cascaded Multi‐Level VSCs -- 5.3.5 Modular Multi‐Level VSC -- Chapter 6 Frequency Coupling Matrices -- 6.1 Construction of FCM in the Harmonic Domain -- 6.2 Construction of FCM in the Time Domain -- Chapter 7 General Control Approaches of a VSC -- 7.1 Reference Frame -- 7.1.1 Stationary‐abc Frame -- 7.1.2 Stationary‐< -- 3:spiinlinemath 0:display& -- equals -- "inline" 0:overflow& -- equals -- "scroll" > -- αβ Frame -- 7.1.3 Synchronous‐< -- 3:spiinlinemath 0:display& -- equals -- "inline" 0:overflow& -- equals -- "scroll" > -- dq Frame -- 7.1.4 Phase‐Locked Loop -- 7.2 Control Strategies -- 7.2.1 Vector‐Current Controller -- 7.2.2 Direct Power Controller -- 7.2.3 DC‐bus Voltage Controller -- 7.2.4 Circulating Current Controller -- Chapter 8 Generalized Steady‐State Solution Procedure for Closed‐Loop Converter Systems -- 8.1 Introduction -- 8.2 Generalized Procedure -- 8.2.1 Step 1: Determine How and Where to Break the Loop -- 8.2.2 Step 2: Check if the Calculation Flows of the Broken System are Feasible.
8.2.3 Step 3: Determine What Domain of Each Component in the System Should be Modeled -- 8.2.4 Step 4: Formulate the Mismatch Equations -- 8.2.5 Step 5: Iterate to Find the Solution -- 8.3 Previously Proposed Methods Derived from the Proposed Solution Procedures -- 8.3.1 Steady‐State Methods Derived from Loop‐Breaking 1 Method -- 8.3.2 Steady‐State Methods Derived from Loop‐Breaking 2 Method -- 8.4 The Loop‐Breaking 3 Method -- Chapter 9 Loop‐Breaking 1 Method -- 9.1 A Typical Two‐Level VSC with AC Current Control and DC Voltage Control -- 9.2 Loop‐Breaking 1 Method for a Two‐Level VSC -- 9.2.1 Block 1 -- 9.2.2 Current Controller Block -- 9.2.3 Voltage Controller Block -- 9.3 Solution Flow Diagram -- 9.3.1 Initialization -- 9.3.2 Jacobian Matrix -- 9.3.3 Number of Modulating Voltage Harmonics to be Included -- Chapter 10 Loop‐Breaking 2 Method for Solving a VSC -- 10.1 Modeling for a Closed‐Loop DC‐DC Converter -- 10.1.1 Model of the Buck Converter -- 10.1.2 Constraints of Steady‐State -- 10.1.3 Switching Time Constraints -- 10.1.4 Solution Flow Diagram -- 10.2 Two‐Level VSC Modeling: Open‐Loop Equations -- 10.2.1 Steady‐State Constraints -- 10.2.2 Switching Time Constraints -- 10.2.3 Solution Flow Diagram -- 10.2.4 Initialization -- 10.2.5 Jacobian Matrix -- 10.3 Comparison Between the LB 1 and LB 2 Methods -- 10.3.1 Case #1: Balanced System -- 10.3.2 Case #2: Unbalanced System with AC Waveform Exhibiting Half‐Wave Symmetry -- 10.3.3 Case #3: Unbalanced System, No Waveform Symmetry -- 10.4 Large‐Signal Modeling for Line‐Commutated Power Converter -- 10.4.1 Discontinuous Conduction Mode -- 10.4.2 Continuous Conduction Mode -- 10.4.3 Steady‐State Constraint Equations -- 10.4.4 General Comments -- Chapter 11 Loop‐Breaking 3 Method -- 11.1 OpenDSS -- 11.2 Interfacing OpenDSS with MATLAB -- 11.3 Interfacing OpenDSS with Harmonic Models of VSCs.
Chapter 12 Small‐Signal Harmonic Model of a VSC -- 12.1 Problem Statement -- 12.2 Gauss-Seidel LB 3 and Newton LB 3 -- 12.2.1 Current Injection Method -- 12.2.2 Norton Circuit Method -- 12.3 Small‐Signal Analysis of DC‐DC Converter -- 12.4 Small‐Signal Analysis of a Two‐Level VSC -- 12.4.1 Approach from Section 12.3 -- 12.4.2 Simpler Approach -- Chapter 13 Parameter Estimation for a Single VSC -- 13.1 Background on Parameter Estimation -- 13.2 Parameter Estimator Based on White‐Box‐and‐Black‐Box Models -- 13.3 Estimation Validations -- 13.3.1 Experimental Validation -- 13.3.2 PSCAD/EMTDC Validation -- Chapter 14 Parameter Estimation for Multiple VSCs with Domain Adaptation -- 14.1 Introduction of Deep Learning -- 14.2 Domain Adaptation -- 14.3 Parameter Estimation for Multiple VSCs -- 14.4 Notations for DA -- 14.5 Supervised Domain Adaptation for Regression -- 14.6 Supervised Domain Adaptation for Classification -- 14.7 Test Setup -- 14.7.1 Data Generator -- 14.7.2 Data Preprocessing -- 14.8 Performance Metrics -- 14.8.1 R square (Regression) -- 14.8.2 Mean Absolute Percentage Error, MAPE (Regression) -- 14.8.3 Accuracy (Classification) -- 14.8.4 F1 score (Classification) -- 14.9 Test Results -- 14.9.1 Classification Task on Multiple VSC -- 14.9.2 Regression Task on Multiple VSC -- 14.10 Software for Running the Codes -- 14.11 Implementation of Domain Adaptation -- 14.11.1 Data Generation -- 14.11.2 Regression -- 14.11.3 Classification Network -- References -- Index -- EULA.
Record Nr. UNINA-9910555250603321
Lian Ryan Kuo-Lung  
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Harmonic modeling of voltage source converters using simple numerical methods / / Ryan Kuo-Lung Lia, Ramadhani Kurniawan Subroto. Bing Hao Lin
Harmonic modeling of voltage source converters using simple numerical methods / / Ryan Kuo-Lung Lia, Ramadhani Kurniawan Subroto. Bing Hao Lin
Autore Lian Ryan Kuo-Lung
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (419 pages)
Disciplina 621.3815322
Collana IEEE Press.
Soggetto topico Harmonics (Electric waves) - Mathematical models
Electromagnetic interference - Mathematical models
Electric power-plants - Equipment and supplies
Electric current converters - Mathematical models
Numerical analysis
ISBN 1-119-52715-5
1-119-52719-8
1-119-52714-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Symbols -- Chapter 1 Fundamental Theory -- 1.1 Background -- 1.2 Definition of Harmonics -- 1.3 Fourier Series -- 1.3.1 Trigonometric Form -- 1.3.2 Phasor Form -- 1.3.3 Exponential Form -- 1.4 Waveform Symmetry -- 1.4.1 Even Symmetry -- 1.4.2 Odd Symmetry -- 1.4.3 Half‐Wave Symmetry -- 1.5 Phase Sequence of Harmonics -- 1.6 Frequency Domain and Harmonic Domain -- 1.7 Power Definitions -- 1.7.1 Average Power -- 1.7.2 Apparent and Reactive Power -- 1.8 Harmonic Indices -- 1.8.1 Total Harmonic Distortion (THD) -- 1.8.2 Total Demand Distortion (TDD) -- 1.8.3 True Power Factor -- 1.9 Detrimental Effects of Harmonics -- 1.9.1 Resonance -- 1.9.2 Misoperations of Meters and Relays -- 1.9.3 Harmonics Impact on Motors -- 1.9.4 Harmonics Impact on Transformers -- 1.10 Characteristic Harmonic and Non‐Characteristic Harmonic -- 1.11 Harmonic Current Injection Method -- 1.12 Steady‐State vs. Transient Response -- 1.13 Steady‐State Modeling -- 1.14 Large‐Signal Modeling vs. Small‐Signal Modeling -- 1.15 Discussion of IEEE Standard (STD) 519 -- 1.16 Supraharmonics -- Chapter 2 Power Electronics Basics -- 2.1 Some Basics -- 2.2 Semiconductors vs. Wide Bandgap Semiconductors -- 2.3 Types of Static Switches -- 2.3.1 Uncontrolled Static Switch -- 2.3.2 Semi‐Controllable Switches -- 2.3.3 Controlled Switch -- 2.4 Combination of Switches -- 2.5 Classification Based on Commutation Process -- 2.6 Voltage Source Converter vs. Current Source Converter -- Chapter 3 Basic Numerical Iterative Methods -- 3.1 Definition of Error -- 3.2 The Gauss-Seidel Method -- 3.3 Predictor‐Corrector -- 3.4 Newton's Method -- 3.4.1 Root Finding -- 3.4.2 Numerical Integration -- 3.4.3 Power Flow -- 3.4.4 Harmonic Power Flow -- 3.4.5 Shooting Method -- 3.4.6 Advantages of Newton's Method -- 3.4.7 Quasi‐Newton Method.
3.4.8 Limitation of Newton's Method -- 3.5 PSO -- Chapter 4 Matrix Exponential -- 4.1 Definition of Matrix Exponential -- 4.2 Evaluation of Matrix Exponential -- 4.2.1 Inverse Laplace Transform -- 4.2.2 Cayley-Hamilton Method -- 4.2.3 Padé Approximation -- 4.2.4 Scaling and Squaring -- 4.3 Krylov Subspace Method -- 4.4 Krylov Space Method with Restarting -- 4.5 Application of Augmented Matrix on DC‐DC Converters -- 4.6 Runge-Kutta Methods -- Chapter 5 Modeling of Voltage Source Converters -- 5.1 Single‐Phase Two‐Level VSCs -- 5.1.1 Switching Functions -- 5.1.2 Switched Circuits -- 5.2 Three‐Phase Two‐Level VSCs -- 5.3 Three‐Phase Multilevel Voltage Source Converter -- 5.3.1 Multilevel PWM -- 5.3.2 Diode Clamped Multilevel VSCs -- 5.3.3 Flying Capacitor Multilevel VSCs -- 5.3.4 Cascaded Multi‐Level VSCs -- 5.3.5 Modular Multi‐Level VSC -- Chapter 6 Frequency Coupling Matrices -- 6.1 Construction of FCM in the Harmonic Domain -- 6.2 Construction of FCM in the Time Domain -- Chapter 7 General Control Approaches of a VSC -- 7.1 Reference Frame -- 7.1.1 Stationary‐abc Frame -- 7.1.2 Stationary‐< -- 3:spiinlinemath 0:display& -- equals -- "inline" 0:overflow& -- equals -- "scroll" > -- αβ Frame -- 7.1.3 Synchronous‐< -- 3:spiinlinemath 0:display& -- equals -- "inline" 0:overflow& -- equals -- "scroll" > -- dq Frame -- 7.1.4 Phase‐Locked Loop -- 7.2 Control Strategies -- 7.2.1 Vector‐Current Controller -- 7.2.2 Direct Power Controller -- 7.2.3 DC‐bus Voltage Controller -- 7.2.4 Circulating Current Controller -- Chapter 8 Generalized Steady‐State Solution Procedure for Closed‐Loop Converter Systems -- 8.1 Introduction -- 8.2 Generalized Procedure -- 8.2.1 Step 1: Determine How and Where to Break the Loop -- 8.2.2 Step 2: Check if the Calculation Flows of the Broken System are Feasible.
8.2.3 Step 3: Determine What Domain of Each Component in the System Should be Modeled -- 8.2.4 Step 4: Formulate the Mismatch Equations -- 8.2.5 Step 5: Iterate to Find the Solution -- 8.3 Previously Proposed Methods Derived from the Proposed Solution Procedures -- 8.3.1 Steady‐State Methods Derived from Loop‐Breaking 1 Method -- 8.3.2 Steady‐State Methods Derived from Loop‐Breaking 2 Method -- 8.4 The Loop‐Breaking 3 Method -- Chapter 9 Loop‐Breaking 1 Method -- 9.1 A Typical Two‐Level VSC with AC Current Control and DC Voltage Control -- 9.2 Loop‐Breaking 1 Method for a Two‐Level VSC -- 9.2.1 Block 1 -- 9.2.2 Current Controller Block -- 9.2.3 Voltage Controller Block -- 9.3 Solution Flow Diagram -- 9.3.1 Initialization -- 9.3.2 Jacobian Matrix -- 9.3.3 Number of Modulating Voltage Harmonics to be Included -- Chapter 10 Loop‐Breaking 2 Method for Solving a VSC -- 10.1 Modeling for a Closed‐Loop DC‐DC Converter -- 10.1.1 Model of the Buck Converter -- 10.1.2 Constraints of Steady‐State -- 10.1.3 Switching Time Constraints -- 10.1.4 Solution Flow Diagram -- 10.2 Two‐Level VSC Modeling: Open‐Loop Equations -- 10.2.1 Steady‐State Constraints -- 10.2.2 Switching Time Constraints -- 10.2.3 Solution Flow Diagram -- 10.2.4 Initialization -- 10.2.5 Jacobian Matrix -- 10.3 Comparison Between the LB 1 and LB 2 Methods -- 10.3.1 Case #1: Balanced System -- 10.3.2 Case #2: Unbalanced System with AC Waveform Exhibiting Half‐Wave Symmetry -- 10.3.3 Case #3: Unbalanced System, No Waveform Symmetry -- 10.4 Large‐Signal Modeling for Line‐Commutated Power Converter -- 10.4.1 Discontinuous Conduction Mode -- 10.4.2 Continuous Conduction Mode -- 10.4.3 Steady‐State Constraint Equations -- 10.4.4 General Comments -- Chapter 11 Loop‐Breaking 3 Method -- 11.1 OpenDSS -- 11.2 Interfacing OpenDSS with MATLAB -- 11.3 Interfacing OpenDSS with Harmonic Models of VSCs.
Chapter 12 Small‐Signal Harmonic Model of a VSC -- 12.1 Problem Statement -- 12.2 Gauss-Seidel LB 3 and Newton LB 3 -- 12.2.1 Current Injection Method -- 12.2.2 Norton Circuit Method -- 12.3 Small‐Signal Analysis of DC‐DC Converter -- 12.4 Small‐Signal Analysis of a Two‐Level VSC -- 12.4.1 Approach from Section 12.3 -- 12.4.2 Simpler Approach -- Chapter 13 Parameter Estimation for a Single VSC -- 13.1 Background on Parameter Estimation -- 13.2 Parameter Estimator Based on White‐Box‐and‐Black‐Box Models -- 13.3 Estimation Validations -- 13.3.1 Experimental Validation -- 13.3.2 PSCAD/EMTDC Validation -- Chapter 14 Parameter Estimation for Multiple VSCs with Domain Adaptation -- 14.1 Introduction of Deep Learning -- 14.2 Domain Adaptation -- 14.3 Parameter Estimation for Multiple VSCs -- 14.4 Notations for DA -- 14.5 Supervised Domain Adaptation for Regression -- 14.6 Supervised Domain Adaptation for Classification -- 14.7 Test Setup -- 14.7.1 Data Generator -- 14.7.2 Data Preprocessing -- 14.8 Performance Metrics -- 14.8.1 R square (Regression) -- 14.8.2 Mean Absolute Percentage Error, MAPE (Regression) -- 14.8.3 Accuracy (Classification) -- 14.8.4 F1 score (Classification) -- 14.9 Test Results -- 14.9.1 Classification Task on Multiple VSC -- 14.9.2 Regression Task on Multiple VSC -- 14.10 Software for Running the Codes -- 14.11 Implementation of Domain Adaptation -- 14.11.1 Data Generation -- 14.11.2 Regression -- 14.11.3 Classification Network -- References -- Index -- EULA.
Record Nr. UNINA-9910830140203321
Lian Ryan Kuo-Lung  
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui